decagone

DEmonstrator of industrial CArbon-free power Generation from ORC-based waste-heat-to-Energy systems

Industrial Waste Heat Recovery and Energy Efficiency

Industrial Waste heat recovery is a necessary energy efficiency measure to limit carbon emissions, specifically from heat-intensive industries.

Demonstrating innovative ORC Technology

DECAGONE proposes key innovations making ORC systems more efficient, compact, cost-effective, safer and adaptable to diverse sectors. They will be demonstrated in a 2 MWe ORC unit integrated into a steel production plant.

ORC: a mature technology to exploit industrial waste heat recovery

The electricity generated on-site by the ORC:

- Does not cause any additional emissions,
- Is dispatchable and reliable,
- Can be used directly on-site, reducing the load of transmission and distribution grid,
- Can contribute to the reduction of EU's dependency on imported fuels.

Figure 1: Map of industrial sites with significant waste heat recovery potential in Europe¹

Potential of industrial waste heat recovery for electricity generation in EU27

renewable.

Adressed Key-Challenges Target industries Lack of harmonisation **Financial risk Energy availability** in EU legislation Esco model reduces Waste heat to power as a High-level policy investment risk for way to increase energy recommendation about the industries and <u>،</u>۷۶ availability for industries, benefits of ORC for waste guarantees against the supporting local heat to power application, fluctuation of the economy for EU regions, since, most of EU countries Steel **Metal** electricity market prices. and sustaining local do not recognize the energy demand. generated electricity as

Decarbonization of energy intensive industries

Waste heat to power participates to lower the environmental footprint of power generation through the production of carbon-free electricity.

Tax regime on energy efficiency measures

Disseminate to EU decision makers the benefits of energy efficiency and energy recycling.

Cost of electricity

DECAGONE technology lowers the system's cost of ownership, reducing the price of electricity generated for self-consumption.

Objectives & Results

Develop new components, models, architectures and technologies

- Innovative hermetic 2 MWe turbogenerator
- Active magnetic bearings
- Thermal storage for buffering of transient and intermittent heat source
- Advanced heat exchangers and heat recovery unit
- Active charge management

Validate innovative approaches using new experimental design

- Combined models for basic and detailed engineering based on quasi steady-state and dynamical modelling
- Optimized instrumentation for rationalized advanced monitoring, control

Demonstrate real-life operation and validate LCA models

- Installed, commissioned and operating industrial 2–MWe demonstrator plant
- Near-zero maintenance of the running ORC system
- Validated process and LCA models

Prepare the next commercial generation of ORC-based waste heat recovery systems derived from **DECAGONE**

- Technical-economic analyses of the overall system
- Transposability assessment of the solution in several industrial sectors
- Detailed industrialization route for a nominal point tracking system

Promote benefits of ORC-based waste heat recovery and foster industrial uptake

and data processing Validated models and retrofit of the component design • Tool for predictive maintenance

• Communication and dissemination on DECAGONE to relevant stakeholders and the general public • Exploitation of the DECAGONE results through industrialization and proposed business models Partnerships with key stakeholders in the energy intensive industries and across the ORC value chain

¹U. Persson, B. Möller and S. Werner, "Heat Roadmap Europe: Identifying Strategic Heat Synergy Regions," Energy Policy, 74, p. 663–681, 2014. ² Thermal Energy Harvesting The Path to Tapping into a Large CO2-free European Power Source

This project has received funding from the EU Horizon Europe research and innovation programme under grant agreement No 101069740.

in decagone-project

www.decagone.eu